Welcome to the Everything Equation

And The Tier-0 Framework

A premium research platform curating open problems and scholarly articles, connecting ideas across disciplines.

What is the Everything Equation?

L=ΩΔ(L)\mathcal{L}=\Omega\Delta\partial(\mathcal{L})

The Everything Equation is a unifying structural principle proposed to govern physical law, mathematics, and information under a single closure condition.

Learn more

Tier-1 Dynamical Realization

Tier-0 provides a closure/admissibility criterion. Tier-1 makes it concrete: a coupled Dirac–Λ operator system whose low-energy expansion recovers GR + Yang–Mills + fermions, while enforcing non-tunable admissibility constraints.

S[g,A,ψ]=Tr ⁣(f(DE2/Λ2))+ψ,DEψS[g,A,\psi]=\mathrm{Tr}^\ast\!\big(f(D_E^2/\Lambda^2)\big)+\langle \psi, D_E\psi\rangle
SΩ(DE;T)DT(K)forT[TUV,TIR]S_{\Omega}(D_E;T)\le D_T(K)\quad \text{for}\quad T\in[T_{\mathrm{UV}},T_{\mathrm{IR}}]
SΩ(DE;TUV)=DTUV(cMK)(UV anchor)S_{\Omega}(D_E;T_{\mathrm{UV}})=D_{T_{\mathrm{UV}}}(c_M K)\qquad\text{(UV anchor)}
δ ⁣(S+TUVTIR(SΩDT)dμ)=0(KKT stationarity)\delta\!\left(S+\int_{T_{\mathrm{UV}}}^{T_{\mathrm{IR}}}\big(S_{\Omega}-D_T\big)\,d\mu\right)=0\qquad\text{(KKT stationarity)}

Latest Problems

Latest Papers